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Abstract —The problem of absorption with a chemical reaction in a turbulent falling film is theoretically
analyzed by assuming that the mass transport normal to the interface takes place as a combined
molecular and turbulent mechanism. It is assumed that the eddy diffusivity is a function of the distance to
the gas-liquid interface.

A very simple and accurate approximate solution is obtained when chemical reactions are of first-
order, reversible and irreversible, type. The main result is the expression for predicting the rate of mass
transfer at the interface. When compared with results obtained from the surface renewal school it is found
that most of them are encompassed by our final result using this eddy diffusivity model. Moreover it is
shown that when the convective transport term, parallel to the interface, is neglected the resulting
expression coincides exactly with that given by the pioneering work of Danckwerts [1] using his surface
replacement idea. Since the eddy diffusivity can be related to hydrodynamic parameters so should the rate

of surface renewal, since a simple relation linking both parameters is found.
It is concluded that surface renewal and eddy diffusivity models should not be considered as two
different approaches to describe the same phenomenon since they are simply related.

NOMENCLATURE
b,  dimensionless parameter equal to 1;

for species 4 and B and given by equation

3);

b,,b;, dimensionless parameter given by equation G, dimensionless eddy diffusivity given by
(A-14) or equation (17); equation (5a);

B, dimensionless auxiliary variable satisfying G, denotes (dG/d¢) [see equation (5b)];
equation (29b) and subject to conditions h, auxiliary dimensionless function of &, used
(30a,b,c); with WBK approximation, solution to

B*,  dimensionless auxiliary variable satisfying equation (A-4);
equation (29b) and subject to conditions ", denotes (dh/d&);

_ (29ab)and B*=1at =0; hg,hy,hy,. .., functions of € used to solve

B*,  denotes Laplace transform of B*; equation (A-4) approximately;

E’(O) denotes (dE/dE) evaluated H*  dimensionless auxiliary variable satisfying

’ at the interface : ) equation (29a) and subject to conditions

C,. dimensionless concentration of species 4 . (29a,b) and H* = 1 at £ = 0;
equal to (C/C,,.); I!*, denotes Laglace transform of H*;

C,, dimensional concentration of species 4; H), fienotes (_dH*/ d¢) evaluated at the

C,., dimensional concentration of species A at & 1qterfac'e, L

’ ~0: k, dimensional pseudo-first-order kinetic

Cy,  dimensionless concentration of species B cgnstaqt; .
equal to (Cp/C ..); k.,  dimensional film mass transfer coefficient ;

Cy,, dimensionless concentration of species B at M, dlmen.smnless parameter defined by

) E=0; equation (28);

Cy  dimensional concentration of species B P, auxiliary parameter either equal to D, or to

d, dimensional film thickness; S+D,; . .

D,, modified dimensionless Damkohler number 5 Laplace trz.msform dimensionless
defined by equation (6b); . para.lr.neter ’ .

D, molecular diffusivity (dimensional) assumed S*, a}lxﬂlar.y parameter defined as $* = S+b;;
equal for species 4 and B; Sh,  dimensionless Sherwood number for the

D*,  dimensional eddy diffusivity assumed equal case of first-order irreversible chemical

reactions defined by equation (15);
+Research member of Consejo Nacional de Investi- Shp,  dimensionless Sherwood number given by

gaciones Cientificas y Técnicas (CONICET) Argentina.
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order irreversible chemical reactions [see
equation (18)];

denotes Sherwood number for surface
renewal theory;

dimensionless Sherwood number for
physical absorption ;

denotes Sherwood number for physical
absorption when 7 — = ;

dimensionless Sherwood number for the
case of first-order reversible chemical
reactions ;

dimensionless Sherwood number for the
case of first-order reversible reactions as
given by the penetration theory;
dimensional contact time equal to (x/Uy);
dimensionless contact time (Fourier
number) = td?/D;

surface liquid film velocity ;

rate of surface renewal whent = 0;
parallel coordinate to the interface;
normal coordinate to the interface ;
dimensionless coordinate to the interface
equal to (y/d).

Greek symbols

,

B,

o,

o,

Dpy

P,

-
SR>

dimensionless variable defined as (C

+ (VH)Q

dimensionless eddy diffusivity equal to
(e/D)d?,

dimensionless parameter defined as the
asymptotic expression of the reaction factor
when D, — «, for first-order irreversible
reactions as given by equation (22);
denotes - for first-order reversible reactions
given by equation (38);

auxiliary dimensionless parameter taken as
~08;

dimensional mass transfer boundary-layer
thickness [see equation (39)];

dimensional eddy diffusivity parameter
defined by equation (3);

dimensionless normal coordinate defined
by equation (6¢);

modified dimensionless contact time
defined by equation (6b);

modified Laplace transform of C,;

first term of the expansion of ¢» when p
—0:

nth term of the expansion of «» when p — 0;
denotes the asymptotic solution for ¢» when
p— %

reaction factor for first-order irreversible
reactions defined as (Sh/Sh°);

denotes reaction factor for first-order
irreversible reactions given by surface
renewal theory [see equation (23)];
denotes reaction factor for first-order
reversible reactions;

denotes reaction factor for first-order
reversible reactions given by surface
renewal theory [see equation (37)];

7 inverse of the chemical equilibrium
constant for reaction A= B;
Q, per cent differences between the actual

reaction factor und that given by surface
renewal theory [see equation (24)).

INTRODUCTION

SINCE turbulent films are commonly encountered in
many industrial absorption processes, a great num-
ber of theoretical and experimental contributions
with the aim of predicting the rate of absorption
have been presented in the chemical engineering
literature.

Due to the rather poor knowledge of the fluid
mechanics of the turbulent liquid stream with a free
interface there are two main approaches to simplify
calculations for predicting the rate of mass transfer
with and without chemical reaction through the
interface. After Danckwerts [1] and his main idea
relating to the “surface renewal” model a number of
authors, as discussed later by Danckwerts [2]
himself, presented other similar models which basi-
cally propose other expressions for the rate of surface
renewal. In this line of reasoning the following
should be included: Dobbins [3], Toor and Mar-
chello {4], and Marchello and Toor [5] models
also known as “film-penetration renewal” models.
Basically this first approach postulates that the
governing mass balance differential equation, for
each piece of the interface replaced, is that of the
penetration theory. The crucial point.is the justifi-
cation of the expression of the rate of replacement
which must be intuitively accepted with at least an
empirical parameter which must be experimentaly
measured. The main advantage is the very simple
form of the resulting expression for the rate of mass
transfer and the main disadvantage is the difficulty
that arises when such a parameter must be related to
the hydrodynamic parameters such as Reynolds,
Froude and eventually Weber numbers which char-
acterize the flow pattern.

The other approach is also an oversimplification of
the actual mechanism of mass transport. It is based
on the time averaged technique of the governing
differential equations when the flow pattern is
turbulent. As a consequence an eddy diffusivity must
be introduced in the time averaged mass balance
differential equation. The crucial point here is the
expression for the eddy diffusivity which is also
empirical and must be intuitively accepted. Levich
[6], for instance, postulates an expression where the
eddy diffusivity is a growing function of the distance
measured from the interface. As shown below in this
case at least an empirical parameter must also be
introduced. However the advantage with this ap-
proach, as shown by King [7], is that this parameter
is directly related to hydrodynamic parameters and
also to viscous dissipation. The main disadvantage,
as pointed out by Danckwerts [2], is that this model
would be much more difficult to use than those of
the surface renewal school since the resulting mass
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balance differential equation, when the chemical
reaction must be taken into account, is not easily
solved. In fact the only case presented in the
literature, where this second approach was used and
the chemical reaction was taken into account, was
solved by Menez and Sandall {8} using numerical
techniques.

The purpose of this work is to analyze theoreti-
cally the whole problem of mass transfer with
chemical reaction assuming as valid this second
approach. In the first part the main assumptions that
support the model are explicitly stated. In the second
part the main steps, leading to a rather simple and
accurate expression for the rate of mass transfer, are
developed leaving the algebraic details for the
Appendix. The analysis is divided in two sections:
one to consider first order irreversible reactions and
the other for first order reversible reactions.

It is shown that the final analytical expression for
the rate of mass transfer coincides, in the limiting
case of relatively large contact times, with the
corresponding expression derived from Danckwerts
[1] surface renewal model. This is a very important
finding, since at least the main disadvantages of both
approaches are eliminated after this contribution.
Moreover a relationship between the specific rate of
surface renewal and the eddy diffusivity parameter is
established.

DESCRIPTION OF THE SYSTEM

The schematic diagram of the system to be
analyzed is presented in Fig. 1. It is shown that x and
y denote the coordinates parallel and normal to the
interface respectively.

It is assumed that the flow is incompressible and
that the only component of the time averaged
velocity vector is U which is a function of y. The
value of U at the interface (y = 0) is denoted by Us.

Furthermore it will be assumed that the penet-
ration depth (ie. the distance from the ‘interface
where the concentration of the species A decays to
almost zero) is small in comparison with the
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FiG. 1. Schematic diagram of the gas absorption studied.

corresponding thickness where U changes sub-
stantially. With this assumption, which can be
verified afterwards, U can be replaced by Ug in the
mass balance equation for the absorbing species A.
Moreover the usual boundary-layer assumptions will
be used here: the order of magnitude of the time
averaged concentration changes in the y direction
are much larger than the corresponding changes in
the v direction. With these assumptions, the steady-
state time-averaged mass balance for species 4 in a
dilute solution can be written in the following form:

oaCN @ éC 4 .
Ug ax =é} (D-}—D*}“a? +T, (N

C , being the time averaged concentration of species
A, D and D* the molecular and eddy diffusivity and
[, the net rate of generation of species A, due to
chemical reaction, expressed in moles per unit
volume.

The crucial point is the form assumed for D* in
equation {I). Following previous works (Levich [6],
King [7], Menez and Sandall [8] and Sandall [9]) it
will be assumed that:

D* = g2 2)

When expression (2) is replaced into equation {1) we
can write:

oc, oC, aC,
ox ; dy

A close inspection to equation (3) shows that its
second term on the LHS produces a similar effect to
that of a normal velocity component directed to the
interface. This is a direct consequence of the
expression chosen for D*. Moreover equation {3)
resembles very much the governing differential mass
balance for stagnation flow. Thus it should be
expected that, when x - o, an asymptotic value of
the boundary-layer mass-transfer thickness will be
obtained even in the absence of a chemical reaction.
This in fact was the case analyzed by King [7] who
neglected the term multiplied by Us in equation (1)
and the effect of the chemical reaction. The extension
of King’s [ 7] work to include the case of a first-order
chemical reaction was studied both theoretically and
experimentally by Menez and Sandall [8] who
solved equation (1) numerically and succeeded in
correlating their experimental results. In their model
aC Jéx = 0.

Sandall [9] has also solved numerically equation
(1) but neglecting the effect of the chemical reaction.
Moreover Lamourelle and Sandall [10] have care-
fully carried out experiments in turbulent liquid films
to correlate ¢ as a function of the Reynolds number
of the system.

Subramanian [11] has recently presented an
approximate solution for the case analyzed by
Sandall [9]. However his final results are in good
agreement with numerical estimates of Sandall [9] in
a very limited range of contact time {(x/Uy) values.
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More recently Gottifredi and Quiroga [12] have
succeeded in obtaining an approximate expression
which predicts the rate of mass transfer, in the
absence of chemical reaction, in close agreement
(maximum deviation is about 29;) with Sandall’s [9]
numerical results over the whole range of contact
times.

In this work the effect of the chemical reaction will
be studied assuming that species A reacts in the
liquid phase according to first-order irreversible and
reversible reactions. It will be shown that our
analytical approximate results can be expressed in
almost exactly the same form as if they were given by
a surface renewal model. In this way it will be
possible to establish a relation between ¢ and the
main parameter for the rate of surface renewal.

The results deduced here are only valid for first-
order reversible and irreversible reactions in the
absence of a finite initial concentration of the
absorbing species but they can easily be extended to
second-order irreversible reactions by the method
proposed by Yeramian et al. [13] and also, for the
case of finite initial concentration, through the work
of Gottifredi et al. [14].

ANALYSIS
Irreversible first-order reactions
In this case it is assumed that species A reacts in
the liquid phase according to a first order irreversible
chemical reaction. So equation (3) can be written in
the following dimensionless form:

a(fr‘“— = G(2)(0*C Je?)
+G(ENEC /08~ D,C e (4)
where
GE)=1+¢8% GE)=2 (5a,b)
and

Ci=(CyyCy); t=0D/dIS =1t =st
E= (Bt =y gl Dy = (ke),
t=(x/Ug); B =(¢/D)d> (6abedef)
d being the film thickness (see Fig. 1). According to
the assumption stated in the previous section

equation (4) must be solved subject to the following
initial and boundary conditions:

CA:O’ T:()a £>0*
C,=0, 120, &> om0, (7a,b)
C,=1, 120, ¢=0,

so that C,_ is the equilibrium concentration of the
absorbing species at the interface.

A general analytical solution to equation (1)
subject to conditions (7a,b) does not exist but here
an approximate one will be presented. By defining

= sj C (1, &Hexp(—st)dr.
0

Equation (4) is reduced to:

GENA*P/AE?) + G'(€)(dw/dE)
— (D +5) =0 (8)

subject to the following boundary conditions:

o =0, &=0. (9a,b)

c— o =1,

In order to find the approximate solution the
following procedure will be used. First, asymptotic
solutions to equation (8) for small and large values
of s will be found and then they will be matched to
obtain an approximate valid solution for the whole
range of s values.

As s—0(t— =) the following series can be
assumed as solution to equation (8):

(/'7:‘/)o(é)+5‘P1(‘:)+---v (10)

which after being replaced into equation (8} and
collecting terms in like power of s gives:

G(&o+G'(<)po—D 400 =0, (11)

where the upper prime denotes differentiation with

respect to ¢. Since we are mainly interested in the
estimation of the rate of mass transfer at the interface
an approximate expression for ¢y at y = O[g(0)] is

deduced in the Appendix. Thus:
—wp(0) = [DA + (2/”)2]1/2

and when it is compared with results of Menez and
Sandall [8] who solved equation (11) by numerical
techniques an excellent agreement is found. Maxi-
mum deviation is about 2% (see Gottifredi and
Quiroga [12]). It should be noted that equation (11)
is the mass balance for the species 4 when the
convective transport parallel to the interface is
neglected in equation (4).

On the other hand when s— ow(t—0) (see
Appendix) an approximate expression for ¢’ at the
interface [, (0)] can also be deduced:

= (0) = (s+D )" +q(s+D )72+, (13)

(12)

which exactly coincides with Subramanian (11)
results when D, = 0. By matching equations (12)
and (13) by the method described in the Appendix it
is finally found:

=@'(0)={s+@2/m)* +Dj"* = (s*+ D )'", (14)

where s* = s+ (2/m)* was defined. Equation (14) is
now valid on the whole range of s values as shown
by Gottifredi and Quiroga [12].

The form of expression (14) is really compact and
surprising due to its similarity with the known
expression that would have been obtained if the
penetration model had used. Indeed the only
difference is s* instead of s. By defining now the
Sherwood number:

sh=(ed) _ _ %
D oy*

=0

I
- /sl/z,yf-l{; [—m'(oﬂ} (15)
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and performing the antitransform (% ~') operation
in equation (15) it is finally found:

Sh = bSJ‘ Shy{t')exp(—byt)dr’
(o]
+ Sh,exp(—byt), (16)

where
by = 2/ny’ (17
and
Sh, = Bm{(nr)”l exp(—D,1)

+erf[(DAT)l/2]Dy2} (18)

were defined. However it should be noted that
equation (18) is exactly the expression for the
Sherwood number given by the penetration theory.
Thus the first conclusion is that when 7 < 0.05 the
model here analyzed produces almost the same
results as the penetration theory model. Since,
according to experimental results of Lamourelle and
Sandall [10] typical values of ¢ are 0.1-1571, it is
very unlikely that penetration theory would be
helpful under these circumstances [see equation
(6b)]

The other interesting feature of equation (16) is its
remarkable similarity with the result that would have
been obtained if Danckwerts’ [1] surface renewal
model had been applied:

Shg = j wSh exp(—wi*)de¥, (19
0

© (D +b3Y 2 erf{[(D + b3 )t ") + (1) Y2 exp[ (D + b3 )]

diffusivity model had been analytically solved. In fact
this particular case was solved numerically by Menez
and Sandall [8] but the equivalence between the two
models could not be established since Menez and
Sandall [8] did not find an analytical expression for
the Sherwood number.

Thus it can be concluded that the surface renewal
model can be described, after this work, in the form
of a mass balance differential equation in which an
eddy diffusivity is introduced, which in turn describes
a hydrodynamic model of the stagnation type flow in
the neighbourhood of the interface with an increas-
ing diffusivity in the direction normal to the
interface.

On the other hand if it is admitted (see King [7])
that ¢ is directly related to hydrodynamic parameters
so will w, through equation (20). Thus the main
disadvantages of both models, pointed out in the
introduction, have been removed.

All the models derived from the surface renewal
school are also encompassed by equation (16) since
they produce results which are in the intermediate
region between the penetration model and the
surface replacement idea of Danckwerts [1].

For comparison purposes it is better to express the
results in terms of the reaction or enhancement
factor (®) (this being the ratio of the Sherwood
numbers calculated with and without chemical
reaction) as a function of the parameter ; (this being
the asymptotic expression of ® when D, — ). Thus
in the present case:

21)

{nt)” 2 exp{—by1) + (2/m)erf[(by1)?)

and

y = Di*/{(nt)” 2 exp(—by1)+ (2/m)erf[(by1) 2]}

where, according to equation {6b), t* = (1/f) and w
is the rate of surface replacement at ¢* =0. Ex-
pression (16) coincides exactly with equation (19)
when 7 — 20 and if

w = (2/n)*f = SKY, 20}
where Sh® is the Sherwood number in the absence of
chemical reaction when t— co. From a practical
point of view equations (16) and (19) give the same
numerical results when 7 > 4(~7-» ) and when
the relationship between f and w given by equation
{20) is assumed. Since both # and w are empirical
parameters they must be fitted with experimental
results and because they are directly related with
ShY, such a relation can be assumed as valid.
Moreover we can conclude that the surface renewal
model is equivalent to the eddy diffusivity model
when convective transport parallel to the interface is
neglected. It should be stressed that this important
finding would have never have been obtained unless
the governing differential equation for the eddy

(22)

Once again it can be shown that when 1 — 0 classical
penetration theory results are found and as 1 — o, @
is given by Danckwerts surface renewal model:

Osp = (1+77)12 (23)
In Fig. 2, Q defined as:
Q = (Bgz — D) 100/Dg,, 24)

is plotted as a function of y with t as parameter,
Once again it is shown that the differences that arise
from different fluid dynamic models are smoothed
out when the calculated results are expressed in
terms of the reaction factor. Nevertheless, except in a
small region of y around 1, when t > 1.5 the eddy
diffusivity and the surface renewal models almost
coincide exactly. In a lot of industrial equipment
values of 7 of the order of 1.5 are not unusual. So for
most practical situations of mass transfer with
chemical reaction, the convective mass transport
term in equation (3) can be neglected and then this
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F1G. 2. Percent differences between the reaction factor @
given by equation {21} and the corresponding value given
by the surface renewal theory (®gp) [see equation {23)]. Q
and y being defined by equations {24) and (22) respectively.

eddy diffusivity model gives, almost exactly, equal
results as the surface renewal model.t In other words
both models are equivalent.

Reversible first-order reactions

In this case species 4 is absorbed in a turbulent
film and by reacting with species C in excess,
produces a new substance B which is not initially
present in the liquid phase. It is further assumed that
the interface is impermeable to species B. Thus, the
chemical reaction can be represented by

A=B
and mass balance for species 4 and B can be written

in the following dimensionless form, after assuming
equal molecular diffusivities for both species:

oC e[ oC
- i[G(c)f!‘—“

:|"DA(CA ’XCB)-

ot & o

oC, @ ac

-2 LG( )““E]—FD (C,—7Cp) (25a,b)
&t Ek

where the new variable C, is given as the ratio of the
dimensional concentration of B to C,_, while y is the
inverse of the equilibrium constant for the reaction
considered. Equations (25a,b) are subject to the
following initial and boundary conditions:

C,=0, Cg=0, =0, ¢>0;
C,=0, Cg=0, 20, {—=x; (26abc)
C,=1, 8C40&=0, 120, &=0.
By defining two dependent variables
=(C4+Cy),
o= (C4+Cg), (27a,b)
B=C,—Ma,

+1t must be stressed that the conclusion is the same even
if the results are compared in terms of Sherwood numbers.

I C. Gorrirrent and O. D. QUIROGA

where
M= y(l+y7)"" (28)

it can be shown that x and B must satisfy the
following partial differential equations:

ox 8 oo
= Gy
ot & aty

{(2%9a,b)
B
] D, (1+y)B

ot &

subject to the following initial and boundary
conditions:

a=0, B=0, t=0, ¢>0;
a=0 B=0 120 ¢-w;
a=14+Cp 1),
=(1-M)=MCy1), 120, {=0. (30a,bc)

Let us denote the solutions to equation (29a,b)
with homogeneous boundary conditions (let us say
that a=1 and B=1 at ¢ =0), as H* and B*
respectively, which were derived above. Thus, by
using the original boundary conditions (25a,b,c) in
the Laplace transformed field, it can be shown that:

dc. | - ikl {(1+sC (31
dé _::0_ ' dg Jiep Cu) )
and ) - ..
Y [—B*’(O)]-—-[H*'(O)] (12)
MU -BrOl+ [-ARO)]
where
Rk — _,gl.;j
—B*(0) = @ |
_—[s+b3+ (1+x)D ], (33)
_H*‘(O} — ._dHu~ == -1» (S+b3)l (34)
d¢ o s

according to the results derived in the previous
section. By replacing (33) and (34) into equation (31)
we found:

dc, (¥172
d¢ »r':i)m 5

[s*4 D (1+7)]"2—s*17 1‘ N

§ 7[s*+D (1 +7)]"2 +5*172 + (35)

and once again if this result is compared with that
given by the penetration theory (let us say s* = s), it
can be shown that

Sh" = b, j SH,exp(—b,7)de
0

ko d
+ Shexp(—byt) = o) (36)

where the upper index r is to denote the Sherwood
number for reversible reactions and the lower index
p to denote penetration theory results.

Once again equation (36) encompasses all results
derived from the surface renewal school for the case
here analyzed. Danckwerts’ [1] surface replacement
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model is a particular case which can be exactly
derived if the convective transport terms in equations
(29a,b) are neglected. Thus Danckwerts’ [1] very
well known model can be represented in this case by
equations (29a,b) with dC 4|0t = dCgldr = 0. Equa-
tion (36) shows that the Sherwood number is given
by penetration theory results, derived by Sherwood
and Pigford [15], when the unlikely situation of 1
< 0.05 is met. On the other hand when 7 > 4, the
asymptotic result derived from Danckwerts [I]
surface renewal model is found. Expressed in terms
of the reaction factor:

. [ba+D(1+0]'2 b2
Sy [bs+D (1 + )] +b12
In deducing equation - (37) the relation between w
and f given by equation (20) was used. From (37) it

can be shown that the asymptotic expression of
() as D, — v st

+1. (37

(38)

which is in agreement with Sherwood and Pigford’s
[15] predictions since as D, —» x, the hydrodynamic
model is immaterial.

Expression (37) is also given by Danckwerts [2],
in his well-known book, and reduces to the cor-
responding result for first order irreversible reactions
when 7 — 0.

There is no need to carry out calculations in this
case since from a practical point of view the eddy
diffusivity and surface renewal models produce
almost the same expression for the rate of mass
transfer provided T > 1.5.

Such a conclusion would have not been achieved if
the system of governing differential equations for the
eddy diffusivity model had not been analytically
solved.

CONCLUSIONS

A theoretical analysis of the absorption of a gas in
a reacting turbulent liquid film is presented. An eddy
diffusivity model previously studied by Sandall [9]
for the case of physical absorption was used. The
main assumptions leading to the governing differen-
tial mass balance equations for the case of first-order
reversible and irreversible reactions were pointed
out. One of them must however still be proven. It
was assumed that the penetration thickness was
sufficiently small to replace the time-averaged ve-
locity component in the flow direction by its
interfacial value. From expression (20) the penet-
ration depth can be approximately calculated as:

(/) = o =

d) > — = ——
M= d 2B
and since, according to Lamourelle and Sandall [10],
typical values of 8 are 1000-10000 the assumption
seems justified.

A very simple, approximate and accurate ex-
pression to estimate the rate of mass transfer in the

39)
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presence of a first-order reversible and irreversible
reaction was deduced. The comparison of our
predicted results with numerical estimates of Sandall
[9] for the case of physical absorption shows a
maximum deviation of about 2%, as analyzed
elsewhere [12]. Since the case of a first-order
chemical reaction is a superposition based on the
corresponding results for the case without chemical
reaction, the accuracy of the expressions presented in
this work to predict the rate of absorption is
expected to be as good as for the case of physical
absorption. Since the mathematical procedure is
extremely simple it is expected that this work will be
used, in the future, for the analysis of more complex
systems of reaction than those studied here.

As pointed out above the results deduced here are
only valid in the case of zero initial concentration of
the absorbing species and for first-order reversible
and irreversible reactions. However it can be easily
extended to cases of finite initial concentration and
second-order irreversible reactions following the
ideas of Gottifredi et al. [14] and Yeramian et al.
[13] respectively.

However, the most important achievement of this
work is related to finding out the connection
between the surface renewal and the eddy diffusivity
models which, up until now, were treated by many
authors as two different approaches to the same
problem. Moreover in this form the main disadvan-
tages of both schools of reasoning are eliminated.

Moreover it is shown that, with only one empirical
parameter, most of the results derived by modifi-
cations of Danckwerts’ [ 1] pioneering idea of surface
replacement are encompassed by our final analytical
expressions (18) and (36) that predict the rate of
mass transfer in the presence of first-order irrever-
sible and reversible reactions respectively. Further-
more it is shown that Danckwerts’ [1] surface
renewal model can be exactly described by the time-
averaged mass balance governing system of differen-
tial equations when the convective mass transport
parallel to the interface can be neglected and when
the eddy diffusivity is expressed, after the pioneer
work of Levich [6], by equation (2). A limit in terms
of the eddy diffusivity parameter and the actual
contact time is established as a criterium for
neglecting the convective transport parallel to the
interface. (t = 1.5). Also, through equation (20) a
relation between the specific rate of surface renewal
and the eddy diffusivity parameter is established. It
must be stressed that none of these conclusions
would have been derived if the approximate sol-
utions of the eddy diffusivity model had not been
found.

In his book Danckwerts [2] pointed out that the
model presented in this work would be much more
difficult to use than other models (such as film or
surface renewal and associate models) to predict the
rate of mass transfer and to study the effect of the
chemical reaction. This limitation can be removed
after this contribution.
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Lastly it should be mentioned that most of the
analysis presented in this work can be applied to
other situations such as the unsteady mass transfer
in turbulent agitated vessels. In this sense it can be
regarded as an extension of the work of King [7]
who assumed that the mass-transfer process takes
place at steady state conditions.
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APPENDIX

Here we are concerned with the solution of an ordinary
differential equation of the form:

_fd%e Lo fde B
G(C)(g{g)** G (i)(gg)—*pm =0 (A-1)

subject to:
w{0) = 1: (A-2)

where G{<} is given by expression {3). p is a parameter
which is encompassed between 0 and oc. 1t is easy to verify
that p=s+D, and p= D, in equations (8) and (11)
respectively.

When p is large (p — o0}, a solution can be obtained with
WBK approximation. In fact, by letting

w{x) =0,

== EXp {A-3)

| meae
4O
and substituting this expression into (4 —1), h{¢) is found
to satisfy the following differential equation:

GNP +h)+ G (E)h = 0. (A-4)

Thus a solution for large values of p can be written in by
the following series:

{A-5)

By introducing the last expression in (A-4) and collecting
terms in like powers of p, a system of ordinary differential
(rather algebraic) equations is found, which can be easily
solved, yielding

hﬂ(o) =1,

h=hyp' P+ hy+hyp Vidhyp .

B(0) =0, hy(0)= —1/4  (A-6)
so that
= (0)=p' P 4apT 24 (A7)

On the other hand, for small values of p(p — 0) a power
series of the form:

(A-8)

can be used, which once substituted in equation {A-1), and
after matching like powers of p gives:

=g tpe .

d (. deL
-4 (¢ ={), -9
d&f{ (<) & | (A-9)
for p® and
d L deo,
& %G{g)—d?} - (A-10)

for p" with n > 1. However, equation (A-9) is identical to
the steady-state case solved by King (7), namely:

5

—o(0) :i. (A-11)

Thus a valid solution for the whole range of p can be
constructed using the method proposed by Rosenzweig
[16], by letting

e (0) = by R
P ‘

and expanding expression {A-12) for small and large values
of p, conditions for b, and b, are found:
bbby ¥ = (2/m),
by =1,
by(b, —tby) = 4. (A-13)
It should be noted that we found it necessary to

introduce & ~ 0.8 to allow &, and b; to be real and positive
values. Under these conditions,

by=1, by=5hy={/a) {A-14)

Thus,
—'(0) = [p+(2/m)*]'2 (A-15)

Since equation (A-1), {under the same conditions and
with p = D) was solved by Menez and Sandall [8], the
results given by expression {A-15) can be compared with
their numerical results, showing a very good agreement
{maximum deviation less than 29.).
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ABSORPTION GAZEUSE AVEC REACTION CHIMIQUE DU PREMIER ORDRE,
REVERSIBLE QU IRREVERSIBLE, DANS UN FILM LIQUIDE TURBULENT

Résumé—On analyse par voie théorique le probléme de absorption avec réaction chimique dans un film
turbulent et tombant, en supposant que le transport massique normal a linterface se fait selon un
mécanisme combiné moléculaire et turbulent. On suppose que la diffusivité turbulente est fonction de la
distance a I'interface gaz-liquide.

On obtient une solution approchée tres simple lorsque les réactions chimiques sont du premier ordre,
réversibles ou irréversibles. Le résultat principal est expression du flux massique a l'interface. Quand on
compare avec les résultats obtenus par la théorie du renouvellement de la surface, on trouve que la
plupart d’entre eux sont entourés par notre résultat final a partir du modéle de la diffusivité turbulente.
On montre que lorsque le terme de transport paralléle 4 I'interface est néglige, 'expression résultante coin-
cide exactement avec celle donnée par le premier travail de Danckwerts (1) avec I'idée du remplacement
de surface. Puisque la diffusivité thermique peut étre reliée aux paramétres hydrodynamiques, on pourrait
espérer cela pour le taux de renouvellement des surfaces, car une relation simple entre les deux
parametres est frouvee.

Les modeles de renouvellement de surface et de diffusivité turbulente ne doivent pas étre considérés

comme deux approches différentes pour décrire le méme phénoméne puisqu’ils sont simplement reliés.

GASABSORPTION IN VERBINDUNG MIT UMKEHRBAREN UND NICHTUMKEHRBAREN
REAKTIONEN ERSTER ORDNUNG IN FLUSSIGKEITSFILMEN

Zusammenfassung—Das Problem der Absorption mit chemischer Reaktion in einem turbulenten
Rieselfilm wird theoretisch untersucht, wobei angenommen wird, daB der Stofftransport normal zur
Phasengrenzfiiche als kombinierter molekularer und turbulenter Mechanismus ablauft. Es wird
angenommen, dafBl die scheinbare Temperaturleitfahigkeit eine Funktion der Entfernung von der Gas-
Flissigkeits-Grenzfliche ist. Eine sehr einfache und genaue Niherungslosung wird erreicht, wenn die
umkehrbaren und nichtumkehrbaren Reaktionen vom Typ erster Ordnung sind. Das Hauptergebnis ist die
Funktion zur Voraussage der Stofftransportrate an der Phasengrenzfiiche. Vergleicht man dieses Resultat
mit Ergabnissen, die man nach der Vorstellung der Oberflichenerneuerung erhélt, dann zeigt sich, daB
unsere Ergebnisse, die mit dem Modell der scheinbaren Temperaturleitfahigkeit gefunden wurden, die
meisten davon enthalten. Weiter wird gezeigt, daB bei Vernachlassigung des konvektiven Transportterms
parellel zur Phasengrenzflache die entstehenden Ausdriiche exakt mit denen iibereinstimmen, die sich aus
der bahnbrechenden Arbeit von Danckwerts [1] ergeben, wenn man seiner Idee der Oberflichener-
neuerung folgt. Da die scheinbare Temperaturleitfahigkeit mit hydrodynamischen Parametern in
Beziehung gesetzt werden kann, ist das auch fur die Oberflichenermeuerungsrate zu erwarten, zumal eine
einfache Beziehung zwischen den beiden Parametern besteht. AbschlieBend wird festgestellt, dafBl die
Modelle der Oberflichenerneuerung und des scheinbaren Temperaturleitfahigkeit nicht als zwei
verschiedene Moglichkeiten zur Beschreibung des gleichen Phinomens betrachtet werden sollten, weil sie
in einfacher Weise untereinander verkniipft sind.

ABCOPBLIMA TA3A, CONPOBOXIAIOWASICA OBPATUMBIMU U
HEOBPATUMbBIMH PEAKLMSIMH NEPBOTO MOPAIKA B XHIKOCTU NPH
HAJIMYHUH TYPBYJIEHTHOCTH

Annoraumst — [1po6iieMa aGCOPOUEH TIPH HaTHYHH XMMU4ECKOH peakiun B TypByeHTHO!N cTeKarowe
TUIEHKE AHATH3UPYETCA TEOPETHYECKH IIPA JIOMYILEHUH, YTO MEPEHOC MACCH 10 HOPMAIH K TIOBEPXHOCTH
pasjena NpOUCXOMUT B PE3YNLTATE COBMECTHOTO [EHCTBHA MCXaHH3IMOB MOJIEKYIAPHOrO H Typly-
JCHTHOrO neperoca. [lpeanonaraercs, Yro xospduunent Typbysentrol auddysun apnserca Gpynxuned
pacCTOsHAS O NOBEPXHOCTH pajjiena ra3-kuakocTh. [lomyuseHo odeH» npocroe npubimkennoe
PeLUCHHE 1714 Cly4asi, KOTJa XHMHUYECKHE PeaxiHy SBISIOTCA PeaklIHAMH NepBOro nopsaxka obpaTumoro
H HeoOGpaTHMOTo THIOB. OCHOBHEIM Pe3Y/ThTATOM aHANIH3A SBJISCTCS BHIPAKEHHE A8 pacy3Ta CKOPOCTH
NEPEHOCE MACCH HA TOBEPXHOCTH pasnena. TIpH cpaBHEHHH C Pe3yNLTATAME, NHONYMCHHBIMHM HA OCHOBE
Teopuu oGHOBNEHUA TOBCPXHOCTH, HAHIEHO, YTO GONBIIMHCTBO H3 HUX BXOJMT B HAIl OKOHUATENLHBIH
Pe3yneTaT, NOJNYYCHHBIH ¢ MOMOUBIO MonenH TypBynentnolt auddyswu. Kpome Toro, nokasamo,
“TO npu npexeGpexkeHun KOHBEKTHBHMM NIEPEHOCOM NTaPaJLIENLHO TPAHHLE Pasiena (a3, NoTyueHHoe
BEIDaXCHHE NOJHOCTBIO COBNAJACT ¢ BHIPAKEHHEM, NPHBEACHHHIM B MEPBOHAYANBHOH paboTe
Houkeeptca [1] H BRIBENCHHBIM Ha OCHOBE €r0 TEOPHH CMEHLI nopepxHoct. [Tockonnky xoapdunuent
TypOynentaoit arddy3HH MOKHO OTHECTH K IHAPOJHHAMHMYECKHM NAPAMETPAM, TO Tak K& MOXHO
NOCTYNHTL H CO CKOPOCTHIO OGHOB/ECHHSA MOBEPXHOCTH, NOCKONLKY MONYYCHO NPOCTOE COOTHOLICHHE,
caa3LBaowee ofa ITH napaMeTpa.

Cnenan BHBOA O TOM, YTO MOAE/NH OGHOBJEHMS NOBEPXHOCTH H TYpOY/NEHTHOH Iupdy3un ne
JODKHB  pacCMaTPHBATLCH KaK [BA PasAHYHBX NOAXONA K OZHOMY SBNEHHIO, NOCKONBKY OHH

ABJISIOTCH B3AHMOCBA3aHHBIMH.
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