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Abstract-The problem of absorption with a chemical reaction in a turbulent falling film is theoretically 
analyzed by assuming that the mass transport normal to the interface takes place as a combined 
molecular and turbulent mechanism. It is assumed that the eddy diffusivity is a function of the distance to 
the gas-liquid interface. 

A very simple and accurate approximate solution is obtained when chemical reactions are of first- 
order, reversible and irreversible, type. The main result is the expression for predicting the rate of mass 
transfer at the interface. When compared with results obtained from the surface renewal school it is found 
that most of them are encompassed by our final result using this eddy diffusivity model. Moreover it is 
shown that when the convective transport term, parallel to the interface, is neglected the resulting 
expression coincides exactly with that given by the pioneering work of Danckwerts [I] using his surface 
replacement idea. Since the eddy diffusivity can be related to hydrodynamic parameters so should the rate 
of surface renewal, since a simple relation linking both parameters is found. 

It is concluded that surface renewal and eddy diffusivity models should not be considered as two 
different approaches to describe the same phenomenon since they are simply related. 

NOMENCLATURE 

dimensionless parameter equal to 1 ; 
dimensionless parameter given by equation 

(A- 14) or equation (17); 
dimensionless auxiliary variable satisfying 

equation (29b) and subject to conditions 

(3Oa,b,c) ; 
dimensionless auxiliary variable satisfying 

equation (29b) and subject to conditions 
(29a,b) and B* = 1 at < = 0; 

denotes Laplace transform of B* ; 

B*‘(O), denotes (dB*/d<) evaluated 

at the interface ; 
dimensionless concentration of species A 

equal to (c,{/cAs); 
dimensional concentration of species A ; 
dimensional concentration of species A at 5 

=o; 
dimensionless concentration of species B 

equal to (C,/C’,,); 
dimensionless concentration of species B at 

5 =o; 
dimensional concentration of species B; 

dimensional film thickness; 
modified dimensionless DamkGhler number 
defined by equation (6b); 
molecular diffusivity (dimensional) assumed 
equal for species A and B; 

dimensional eddy diffusivity assumed equal 
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for species A and B and given by equation 

(3); 
G, dimensionless eddy diffusivity given by 

equation (5a); 

G’, denotes (dG/d<) [see equation (5b)] ; 
h, auxiliary dimensionless function of 5, used 

with WBK approximation, solution to 
equation (A-4); 

h’, denotes (dh/dg); 
ho,h,,h,, , functions of 5 used to solve 

H*, 
equation (A-4) approximately; 

dimensionless auxiliary variable satisfying 

equation (29a) and subject to conditions 
(29a,b) and H* = 1 at 5 = 0; 
denotes Laplace transform of H*; 

denotes (dfi*/di;) evaluated at the 
interface ; 
dimensional pseudo-first-order kinetic 
constant ; 
dimensional film mass transfer coefficient ; 
dimensionless parameter defined by 
equation (28); 

Pt 

s, 

S*, 

Sb, 

Sh,, 

auxiliary parameter either equal to D, or to 

S+D,; 
Laplace transform dimensionless 
parameter ; 
auxiliary parameter defined as S* = S + b, ; 
dimensionless Sherwood number for the 
case of first-order irreversible chemical 
reactions defined by equation (15) ; 
dimensionless Sherwood number given by 
penetration theory expression for first- 
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order irreversible chemical reactions [see 

equation (1 S)] ; 
denotes Sherwood number for surface 

renewal theory ; 
dimensionless Sherwood number for 

physical absorption ; 
denotes Sherwood number for physical 

absorption when z + z ; 
dimensionless Sherwood number for the 

case of first-order reversible chemical 

reactions ; 
dimensionless Sherwood number for the 

case of first-order reversible reactions as 

given by the penetration theory; 

dimensional contact time equal to (.u/l/‘,s); 

dimensionless contact time (Fourier 

number) = tt/*/D ; 
surface liquid film velocity; 

rate of surface renewal when f = 0; 
parallel coordinate to the interface; 

normal coordinate to the interface; 

dimensionless coordinate to the interface 

equal to (y/r/). 

Greek symbols 

dimensionless variable defined as (C, 

+(‘“); 

dimensionless eddy diffusivity equal to 

(c;D)tl’ ; 

dimensionless parameter defined as the 

asymptotic expression of the reaction factor 

when D,4 -+ z, for first-order irreversible 

reactions as given by equation (22); 

denotes ;’ for first-order reversible reactions 

given by equation (38); 

auxiliary dimensionless parameter taken as 

-0.8; 

dimensional mass transfer boundary-layer 

thickness [see equation (39)] ; 
dimensional eddy diffusivity parameter 

defined by equation (3); 

dimensionless normal coordinate defined 

by equation (6~); 

modified dimensionless contact time 

defined by equation (6b); 

modified Laplace transform of C,, ; 
first term of the expansion of cl> when p 

+O; 
11th term of the expansion of c 1 when p + 0; 
denotes the asymptotic solution for ((9 when 

p - 72 ; 

reaction factor for first-order irreversible 

reactions defined as (Sh/Sh’); 
denotes reaction factor for first-order 

irreversible reactions given by surface 

renewal theory [see equation (23)] ; 
denotes reaction factor for first-order 

reversible reactions; 

denotes reaction factor for first-order 

reversible reactions given by surface 

renewal theory [see equation (37)] ; 

inverse of the chemical equilibrium 

constant for reaction A --. B: 
per cent differences between the actual 

reaction factor and that given by surface 

renewal theory [see equation (74)]. 

INTRODC!CTIOR 

SINCE turbulent films are commonly encountered in 

many industrial absorption processes, a great num- 

ber of theoretical and experimental contributions 

with the aim of predicting the rate of absorption 

have been presented in the chemical engineering 

literature. 

Due to the rather poor knowledge of the fluid 

mechanics of the turbulent liquid stream with a free 

interface there are two main approaches to simplify 

calculations for predicting the rate of mass transfer 

with and without chemical reaction through the 

interface. After Danckwerts [I] and his main idea 

relating to the “surface renewal” model a number of 

authors, as discussed later by Danckwerts [2] 

himself, presented other similar models which basi- 

cally propose other expressions for the rate of surface 

renewal. In this line of reasoning the following 

should be included: Dobbins [3], Toor and Mar- 

chello [4], and Marchello and Toor [5] models 

also known as “film-penetration renewal” models. 

Basically this first approach postulates that the 

governing mass balance differential equation, for 

each piece of the interface replaced, is that of the 

penetration theory. The crucial point is the justifi- 

cation of the expression of the rate of replacement 

which must be intuitively accepted with at least an 

empirical parameter which must be experimentaly 

measured. The main advantage is the very simple 

form of the resulting expression for the rate of mass 

transfer and the main disadvantage is the difficulty 

that arises when such a parameter must be related to 

the hydrodynamic parameters such as Reynolds, 

Froude and eventually Weber numbers which char- 

acterize the tlow pattern. 

The other approach is also an oversimplification of 

the actual mechanism of mass transport. It is based 

on the time averaged technique of the governing 

differential equations when the flow pattern is 

turbulent. As a consequence an eddy diffusivity must 

be introduced in the time averaged mass balance 

differential equation. The crucial point here is the 

expression for the eddy diffusivity which is also 

empirical and must be intuitively accepted. Levi& 

[6], for instance, postulates an expression where the 

eddy diffusivity is a growing function of the distance 

measured from the interface. As shown below in this 

case at least an empirical parameter must also be 

introduced. However the advantage with this ap- 

proach, as shown by King [7], is that this parameter 

is directly related to hydrodynamic parameters and 

also to viscous dissipation. The main disadvantage, 

as pointed out by Danckwerts [2], is that this model 

would be much more difficult to use than those of 

the surface renewal school since the resulting mass 
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balance differential equation, when the chemical 
reaction must be taken into account, is not easily 
solved. In fact the only case presented in the 
literature, where this second approach was used and 
the chemical reaction was taken into account, was 
solved by Menez and Sandall 18) using numerical 
techniques. 

The purpose of this work is to analyze theoreti- 
cally the whole problem of mass transfer with 
chemical reaction assuming as valid this second 
approach. In the first part the main assumptions that 
support the mode1 are explicitly stated. In the second 
part the main steps, leading to a rather simple and 
accurate expression for the rate of mass transfer, are 
developed leaving the algebraic details for the 
Appendix. The analysis is divided in two sections: 
one to consider first order irreversible reactions and 
the other for first order reversible reactions. 

It is shown that the final analytical expression for 
the rate of mass transfer coincides, in the limiting 
case of relatively large contact times, with the 
corresponding expression derived from Danckwerts 
[I] surface renewal model. This is a very important 
finding, since at least the main disadvantages of both 
approaches are eliminated after this contribution. 
Moreover a relationship between the specific rate of 
surface renewal and the eddy diffusivity parameter is 
established. 

DESCRIPTION OF THE SYSTEM 

The schematic diagram of the system to be 
analyzed is presented in Fig. I ~ It is shown that .Y and 
y denote the coordinates parallel and normal to the 
interface respectively. 

It is assumed that the flow is incompressible and 
that the only component of the time averaged 
velocity vector is iJ which is a function of y. The 
value of U at the interface (~1 = 0) is denoted by U,. 

Furthermore it will be assumed that the penet- 
ration depth (i.e. the distance from the ‘interface 
where the concentration of the species A decays to 
almost zero) is small in comparison with the 

Gas 

FIG. I Schematic diagram of the gas absorption studied. 

corresponding thickness where U changes sub- 
stantially. With this assumption, which can be 
verified afterwards, U can be replaced by U, in the 
mass balance equation for the absorbing species A. 
Moreover the usual boundary-layer assumptions will 
be used here: the order of magnitude of the time 
averaged concentration changes in the y direction 
are much larger than the corresponding changes in 
the .X direction. With these assumptions, the steady- 
state time-averaged mass balance for species A in a 
dilute solution can be written in the following form: 

ci.4 being the time averaged concentration of species 
A, D and D* the molecular and eddy diffusivity and 
TA the net rate of generation of species A, due to 
chemical reaction, expressed in moles per unit 
volume. 

The crucial point is the form assumed for D* in 
equation (I). Following previous works (Levich [6], 
King [7], Menez and Sandal! [8] and Sandal1 [9]) it 
will be assumed that: 

D* ZZ sy’. (2) 

When expression (2) is replaced into equation (I) we 
can write: 

A close inspection to equation (3) shows that its 
second term on the LHS produces a similar effect to 
that of a normal velocity component directed to the 
interface. This is a direct consequence of the 
expression chosen for D*. Moreover equation (3) 
resembles very much the governing differential mass 
balance for stagnation Row. Thus it should be 
expected that, when .Y + X, an asymptotic value of 
the boundary-layer mass-transfer thickness will be 
obtained even in the absence of a chemical reaction. 
This in fact was the case analyzed by King 171 who 
neglected the term multiplied by Us in equation (I ) 
and the effect of the chemical reaction. The extension 

of King’s [7] work to include the case of a first-order 
chemical reaction was studied both theoretically and 
experimentally by Menez and Sandal1 [S] who 
solved equation (I) numerically and succeeded in 
correlating their experimentai results. In their model 
sr,#& = 0. 

Sandal1 [9] has also solved numerically equation 
(I) but neglecting the effect of the chemical reaction, 
Moreover Lamourelle and Sandal1 [IO] have care- 
fully carried out experiments in turbulent liquid films 
to correlate I: .as a function of the Reynolds number 
of the system. 

Subramanian [I I] has recently presented an 
approximate solution for the case analyzed by 
Sandal1 [9]. However his final results are in good 
agreement with numerical estimates of Sandal1 [9] in 
a very limited range of contact time (s/U,) values. 
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More recently Gottifredi and Quiroga [12] have 
succeeded in obtaining an approximate expression 

which predicts the rate of mass transfer, in the 
absence of chemical reaction, in close agreement 

(maximum deviation is about 27,;) with Sandall’s [9] 
numerical results over the whole range of contact 

times. 
In this work the effect of the chemical reaction will 

be studied assuming that species A reacts in the 
liquid phase according to first-order irreversible and 

reversible reactions. It will be shown that our 
analytical approximate results can be expressed in 

almost exactly the same form as if they were given by 

a surface renewal model. In this way it will be 

possible to establish a relation between E and the 

main parameter for the rate of surface renewal. 

The results deduced here are only valid for first- 
order reversible and irreversible reactions in the 
absence of a finite initial concentration of the 

absorbing species but they can easily be extended to 
second-order irreversible reactions by the method 

proposed by Yeramian et uI. [13] and also, for the 
case of finite initial concentration, through the work 

of Gottifredi Ed rrl. [ 141. 

ANALYSIS 

Irrecersible,li’rst-ouder reactiom 
In this case it is assumed that species A reacts in 

the liquid phase according to a first order irreversible 
chemical reaction. So equation (3) can be written in 

the following dimensionless form: 

where 

and 

+ c’(r)(sc,/X) - D,C,, (4) 

G(C) = 1 +c*; G’(C) = 25 (5a,b) 

C,, = (i’,/s‘,d,); t = (tD/&)fi = t*P = t:t 

i’ = (y/d)/?“* = JJ*/?‘*; D, = (k/E), 

t = (x/U,~): /I = (E/D)d*. (6a,b,c,d,e,f) 

rl being the film thickness (see Fig. 1). According to 
the assumption stated in the previous section 
equation (4) must be solved subject to the following 

initial and boundary conditions: 

c,, = 0, z = 0, 4 > 0, 

c, =o, 5 20, <-XI, 

c,d=l, 720, <=o, 

(7a,b) 

so that CA, is the equilibrium concentration of the 

absorbing species at the interface. 
A general analytical solution to equation (I) 

subject to conditions (7a,b) does not exist but here 
an approximate one will be presented. By defining 

s 

, 
(P = s C,(r, r)exp( -st)dr. 

0 

Equation (4) is reduced to: 

G(<)(r/*&d<‘)+ G’(<)(dr)!d<) 

-(D,, fs)cr1 = 0 (8) 

subject to the following boundary conditions: 

0 =o, I- %,(!I = I, c = 0. @a,b) 

In order to find the approximate solution the 
following procedure will be used. First, asymptotic 

solutions to equation (8) for small and large values 
of s will be found and then they will be matched to 

obtain an approximate valid solution for the whole 
range of s values. 

As s-tO(r + ^/, ) the following series can be 
assumed as solution to equation (8): 

(I’ = (f~~(~)+s(~,(~)+.... (10) 

which after being replaced into equation (8) and 

collecting terms in like power of 5 gives: 

G(<)crl’d+ G’(f)& - DA~:‘O = 0, (II) 

where the upper prime denotes differentiation with 
respect to 5. Since we are mainly interested in the 
estimation of the rate of mass transfer at the interface 
an approximate expression for 09; at y = O[&(O)] is 

deduced in the Appendix. Thus: 

-o$,(O) = [D,+(2/n)*]ri2 (12) 

and when it is compared with results of Menez and 
Sandal1 [8] who solved equation (1 I) by numerical 

techniques an excellent agreement is found. Maxi- 
mum deviation is about 2”,:, (see Gottifredi and 
Quiroga [l2]). It should be noted that equation (I I) 
is the mass balance for the species A when the 
convective transport parallel to the interface is 

neglected in equation (4). 
On the other hand when s + m(~ + 0) (see 

Appendix) an approximate expression for 1,~’ at the 

interface [(P ,~ (0)] can also be deduced: 

-(r;(O) = (.s+D,)“2+~(.s+D,,,-‘r2+..., (13) 

which exactly coincides with Subramanian (1 I) 
results when D, = 0. By matching equations (12) 
and (13) by the method described in the Appendix it 
is finally found : 

-(r’(O) = (s+(2/rr)* +D,) “* = (.s*+D,)“‘, (14) 

where s* = s+ (2/7r)2 was defined. Equation (14) is 
now valid on the whole range of s values as shown 
by Gottifredi and Quiroga [12]. 

The form of expression (14) is really compact and 
surprising due to its similarity with the known 
expression that would have been obtained if the 
penetration model had used. Indeed the only 
difference is s* instead of s. By defining now the 
Sherwood number: 
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and performing the antitransform (Y-r) operation 
in equation (f 5) it is finally found: 

Sh = b, 
s 

Sfi,(r’) exp( - b,r’) dt’ 
0 

+Sh,exp(-b,s), (16) 

where 
h, = (2/n)* (17) 

and 

Sh, = /F2 ’ -exp(-D,t) 
(775)1’2 

+erf[(D,7)1i2]D,!/2 
i 

(18) 

were defined. However it should be noted that 
equation (Is) is exactly the expression for the 
Sherwood number given by the penetration theory. 
Thus the first conclusion is that when 7 ,< 0.05 the 
model here analyzed produces almost the same 
results as the penetration theory model. Since, 
according to experimental results of Lamourelle and 
Sandal1 [IO] typical values of E are O.I-ls-‘, it is 
very unfikely that penetration theory would be 
helpful under these circumstances [see equation 

(6b)l. 
The other interesting feature of equation (16) is its 

remarkable similarity with the result that would have 
been obtained if Danckwerts’ [I] surface renewal 
model had been applied: 

wSh,exp( - wt*)dt*, (19) 

diffusivity model had been analytically solved. In fact 
this particular case was solved numerically by Menez 
and Sandal1 [S] but the equivalence between the two 
models could not be established since Menez and 
Sandal1 [8] did not find an analytical expression for 
the Sherwood number. 

Thus it can be concluded that the surface renewal 
model can be described, after this work, in the form 
of a mass balance differential equation in which an 
eddy diffusivity is introduced, which in turn describes 
a hydrodynamic model of the stagnation type flow in 
the neighbourhood of the interface with an increas- 
ing diffusivity in the direction normal to the 
interface. 

On the other hand if it is admitted (see King 173) 
that I: is directly related to hydrodynamic parameters 
so will w, through equation (20). Thus the main 
disadvantages of both models, pointed out in the 
introduction, have been removed. 

All the models derived from the surface renewal 
school are also encompassed by equation (16) since 
they produce results which are in the intermediate 
region between the penetration model and the 
surface replacement idea of Danckwerts [ 11. 

For comparison purposes it is better to express the 
results in terms of the reaction or enhancement 
factor (@) (this being the ratio of the Sherwood 
numbers calculated with and without chemical 
reaction) as a function of the parameter 7 (this being 
the asymptotic expression of 6 
in the present case: 

tp = (~~+b~)1’2erf~[(~~+b~)7]i’2~ +(n7)-‘!2exp[-(II,+b,)7] 

(XT)-“‘exp( - b,t) + (Z/~)erf~(b~7)1’2] 

and 

y = D:‘2/{(717)- 1/Z exp(- b,z)+ (2/rc)erf[(b3t)“2J~. 

where, according to equation (6b), f* = (T/P) and w 
is the rate of surface replacement at t* = 0. Ex- 
pression (16) coincides exactly with equation (19) 
when 7 + m and if 

w = (2/n)2(s = Sh$, (20) 

where Shz is the Sherwood number in the absence of 
chemical reaction when T + co. From a practical 
point of view equations (16) and (19) give the same 
numerical results when T > 4( --7 -+ co) and when 
the relationship between p and w given by equation 
(20) is assumed. Since both j3 and w are empirical 
parameters they must be fitted with experimental 
results and because they are directly related with 
Sh:, such a relation can be assumed as valid. 
Moreover we can conclude that the surface renewal 
model is equivalent to the eddy diffusivity model 
when convective transport parallel to the interface is 
neglected. It should be stressed that this important 
finding would have never have been obtained unless 
the governing differential equation for the eddy 

when D,4-’ x). Thus 

(21) 

(22) 

Once again it can be shown that when 7 --t 0 classical 
penetration theory results are found and as 7 -+ X, CD 
is given by Danckwerts surface renewal model : 

a& = (1 f;J)l’2. (23) 

In Fig. 2, it defined as: 

Q = (%Q -@) ~1W@,*,, (24 ) 

is plotted as a function of y with 7 as parameter, 
Once again it is shown that the differences that arise 
from different fluid dynamic models are smoothed 
out when the calculated results are expressed in 
terms of the reaction factor. Nevertheless, except in a 
small region of y around 1, when 7 2 1.5 the eddy 
diffusivity and the surface renewal models almost 
coincide exactly. in a lot of industrial equipment 
values of T of the order of 1.5 are not unusual. So for 
most practicaf situations of mass transfer with 
chemical reaction, the convective mass transport 
term in equation (3) can be neglected and then this 
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FIG. 2. Percent differences between the reaction factor CD 
given by equatiorl (71) and the corresponding value given 
by the surface renewal theory (esR) [see equation (23)]. Cl 
and ;’ being defined by equations (24) and (22) respectively. 

eddy diffusivity model gives, almost exactly, equal 
results as the surface renewal model.? in other words 
both models are equivalent. 

Reoersible,first-orller reuctiorrs and 
In this case species A is absorbed in a turbulent 

film and by reacting with species C in excess, 
produces a new substance B which is not initially 
present in the liquid phase. It is further assumed that 
the interface is impermeable to species B. Thus, the 
chemical reaction can be represented by 

where 

A EL3 

and mass balance for species A and B can be written 
in the following dimensionless form, after assuming 
equal molecular diffusivities for both species: 

_ B*‘(O) = - dBY 
“I d5 _=o 

= f [s + h3 + (1 +x)D,,,]““, 

C&b) 

where the new variable C, is given as the ratio of the 
dimensional concentration of B to c?,4s, while x is the 
inverse of the equilibrium constant for the reaction 
considered. Equations (Xa,b) are subject to the 
following initial and boundary conditions: 

c., = 0, C, = 0, 5 = 0, i’>o; 

C, = 0, C, = 0, Tao, . I -+ xc ; (26a,b,c) 

C-,=1, aC,la<=O. T>o, _ : =o. 

By de~ning two dependent variables 

ct = (C ,4 + f,), 

B = C,-Ma, 
(27a,b) 

Pit must be stressed that the conclusion is the same even 
if the results are compared in terms of Sherwood numbers. 

where 
M = ;1(1+;/)--’ (28) 

it can be shown that r and R must satisfy the 
following partial differential equations: 

(29a,h) 

subject to the following initial and boundary 
conditions: 

a=o, B=O. x=0, <>O; 

s(=o, B=O, saO, i”-ic; 

X = 1 fC&), 
B = (1 -n/l)- MC,,(T), T 2 0, 5 = 0. (30a,b,c) 

Let us denote the solutions to equation (29a,b) 
with homogeneous boundary conditions (let us say 
that CI = 1 and B = 1 at < = 0), as H* and 8* 
respectively, which were derived above. Thus, by 
using the original .boundary conditions (25a,b,c) in 
the Laplace transformed field, it can be shown that: 

SP 
[-B*‘(o)] - [R*<(o)] 

B\ = 
f;r[-B*‘(o)]+A*‘(O)]) ’ 

(311 

(32) 

(33) 

according to the results derived in the previous 
section. By replacing (33) and (34) into equation (31) 
we found: 

de’, ___ s*iiz 

d< :zO s 

[.s*+D,4(1 +/Y)]‘t2-.s*1’* + 1 

~[s*+D,~(l +~)]1’2+s*“z 

(35) 

and once again if this result is compared with that 
given by the penetration theory (let us say s* = .s), it 
can be shown that 

‘? 
Sh’ = b, Sh;exp(-b,r’)dr’ 

0 

(36) 

where the upper index r is to denote the Sherwood 
number for reversible reactions and the lower index 
p to denote penetration theory results. 

Once again equation (36) encompasses all results 
derived from the surface renewal school for the case 
here analyzed. Danckwerts’ [I] surface replacement 
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model is a particular case which can be exactly 
derived if the convective transport terms in equations 
(29a,b) are neglected. Thus Danckwerts’ [1] very 
well known model can be represented in this case by 
equations (29a,b) with aC,al& = X,ldr = 0. Equa- 
tion (36) shows that the Sherwood number is given 
by penetration theory results, derived by Sherwood 
and Pigford [15], when the unlikely situation of 7 

d 0.05 is met. On the other hand when 7 z 4, the 
asymptotic result derived from Danckwerts [I] 
surface renewal model is found. Expressed in terms 
of the reaction factor: 

uh+D,(l +X)]1~Z-w2 + 1, 

rqK xz -: 

~[b,+D,,(l+~)]~"+b:" 

(37) 

In deducing equation (37) the relation between M 
and /I’ given by equation (20) was used. From (37) it 
can be shown that the asymptotic expression of 
&(;.I) as D,, --t -L is: 

(38) 

which is in agreement with Sherwood and Pigford’s 
[ 151 predictions since as D,d + X, the hydrodynamic 
model is immaterial. 

Expression (37) is also given by Danckwerts [2], 
in his well-known book, and reduces to the cor- 
responding result for first order irreversible reactions 
when I+ 0. 

There is no need to carry out calculations in this 
case since from a practical point of view the eddy 
diffusivity and surface renewal models produce 
almost the same expression for the rate of mass 
transfer provided 7 2 IS. 

Such a conclusion would have not been achieved if 
the system of governing differential equations for the 
eddy diffusivity model had not been analytically 
solved. 

CONCLUSIONS 

A theoretical analysis of the absorption of a gas in 
a reacting turbulent liquid film is presented. An eddy 
diffusivity model previously studied by Sandal1 [9] 
for the case of physical absorption was used. The 
main assumptions leading to the governing differen- 
tial mass balance equations for the case of first-order 
reversible and irreversible reactions were pointed 
out. One of them must however still be proven. It 
was assumed that the penetration thickness was 
sufficiently small to replace the time-averaged ve- 
locity component in the flow direction by its 
interfacial value. From expression (20) the penet- 
ration depth can be approximately calculated as: 

D JI 
((S&l) 2: - = __ 

k,rl 2/j”* 
(39) 

and since, according to Lamourelle and Sandal1 [IO], 
typical values of /j are 1000-10000 the assumption 
seems justified. 

A very simple, approximate and accurate ex- 
pression to estimate the rate of mass transfer in the 

presence of a first-order reversible and irreversible 
reaction was deduced. The comparison of our 
predicted results with numerical estimates of Sandal1 
[9] for the case of physical absorption shows a 
maximum deviation of about 22, as analyzed 
elsewhere [12]. Since the case of a first-order 
chemical reaction is a superposition based on the 
corresponding results for the case without chemical 
reaction, the accuracy of the expressions presented in 
this work to predict the rate of absorption is 
expected to be as good as for the case of physical 
absorption. Since the mathematical procedure is 
extremely simple it is expected that this work will be 
used, in the future, for the analysis of more complex 
systems of reaction than those studied here. 

As pointed out above the results deduced here are 
only valid in the case of zero initial concentration of 
the absorbing species and for first-order reversible 
and irreversible reactions. However it can be easily 
extended to cases of finite initial concentration and 
second-order irreversible reactions following the 
ideas of Gottifredi et al. [14] and Yeramian et al. 

[ 131 respectively. 
However, the most important achievement of this 

work is related to finding out the connection 
between the surface renewal and the eddy diffusivity 
models which, up until now, were treated by many 
authors as two different approaches to the same 
problem. Moreover in this form the main disadvan- 
tages of both schools of reasoning are eliminated. 

Moreover it is shown that, with only one empirical 
parameter, most of the results derived by modifi- 
cations of Danckwerts’ [I] pioneering idea of surface 
replacement are encompassed by our final analytical 
expressions (18) and (36) that predict the rate of 
mass transfer in the presence of first-order irrever- 
sible and reversible reactions respectively. Further- 
more it is shown that Danckwerts’ [I] surface 
renewal model can be exactly described by the time- 
averaged mass balance governing system of differen- 
tial equations when the convective mass transport 
parallel to the interface can be neglected and when 
the eddy diffusivity is expressed, after the pioneer 
work of Levich [6], by equation (2). A limit in terms 
of the eddy diffusivity parameter and the actual 
contact time is established as a criterium for 
neglecting the convective transport parallel to the 
interface. (t > 1.5). Also, through equation (20) a 
relation between the specific rate of surface renewal 
and the eddy diffusivity parameter is established. It 
must be stressed that none of these conclusions 
would have been derived if the approximate sol- 
utions of the eddy diffusivity model had not been 
found. 

In his book Danckwerts [2] pointed out that the 
model presented in this work would be much more 
difficult to use than other models (such as film or 
surface renewal and associate models) to predict the 
rate of mass transfer and to study the effect of the 
chemical reaction. This limitation can be removed 
after this contribution. 
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Lastly it should be mentioned that most of the 
analysis presented in this work can be applied to 
other sjtuatjons such as the unsteady mass transfer 
in turbulent agitated vessels. In this sense it can be 
regarded as an extension of the work of King [7] 
who assumed that the mass-transfer process takes 
place at steady state conditions. 
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APPENDIX 
Here we are concerned with the solution of an ordinary 

differential equation of the form: 

subject to: 
I,)(O) = 1 : r,,(r) = 0. (A-7) 

where G(t) is given by expression (5). p is a parameter 
which is encompassed between 0 and x. It is easy to verify 
that p = s+D,, and p = D, in equations (8) and (11) 
respectively. 

When p is large (p + w), a solution can be obtained with 
Wl3K approximation. In fact, by letting 

‘p = exp/ 11 b(<*)d<‘i (A-3) 

and substituting this expression into (A - l), h(<) is found 
to satisfy the following differential equation: 

G(<)(h’+h’)+G’(:)h = 0. (A-4) 

Thus a solution for large values of p can be written in by 
the following series: 

h =h,p”2fh,+hzp~’ ‘+h,p-I+.... (A-5) 

By introducing the last expression in (A-4) and collecting 
terms in like powers of p, a system of ordinary differential 
(rather algebraic) equations is found, which can be easily 
solved, yielding 

hi = I, h,(O) = 0, /Q(O) = - li4. th-6) 

so that 

-“‘;(o)=p’~~+~p-‘~~+,,,, (A-7) 

On the other hand, for small values of p(p -+ 0) a power 
series of the form: 

for p” and 

= o’,_,, (A-10) 

(A-9) 

for p” with tr 3 1. However, equation (A-9) is identical to 
the steady-state case solved by King (7), namely: 

2 
-c!)o(o) = n;. (A-II) 

Thus a valid solution for the whole range of p can be 
constructed using the method proposed by Rosenzweig 
[ 161, by letting 

-<,,‘(()) = b k!?.!- 
’ (p+ b,)“2 

(A-12) 

and expanding expression (A- 12) for small and large values 
ofp, conditions for b, and b, are found: 

, 
h, b&S I,- = (2/n). 

h, = I, 

h, (b, - $h,) = $5. (A-13) 

It should be noted that we found it necessary to 
introduce d 2 0.8 to allow b, and b, to be real and positive 
values. Under these conditions, 

h, = 1, hz = h, = (2/72)2. (A-14) 

Thus, 

-t,,‘(O) = [p+ (2/n)‘]“z. (A-15) 

Since equation (A-l), (under the same conditions and 
with p = DA) was solved by Menez and Sandal1 [S], the 
results given by expression (A-15) can be compared with 
their numerical results. showing a very good agreement 
(maximum deviation less than 27,;). 
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ABSORPTION GAZEUSE AVEC REACTION CHIMIQUE DU PREMIER ORDRE, 
REVERSIBLE OU IRREVERSIBLE, DANS UN FILM LIQUIDE TURBULENT 

R&sum&On analyse par voie thkorique le problkme de I’absorption avec rkaction chimique dam un film 
turbulent et tombant, en supposant que le transport massique normal i I’interface se fait selon un 
mkcanisme combini moltculaire et turbulent. On suppose que la diffusiviti: turbulente est fonction de la 
distance & l’interface gaz--1iquide. 

On obtient une solution approchCe tres simple lorsque les riactions chjmiques sont du premier ordre, 
rkversibles ou irrtversibles. Le rtsultat principal est l’expression du flux massique i I’interface. Quand on 
compare avec les r&ltats obtenus par la thCorie du renouvellement de la surface, on trouve que la 
plupart d’entre eux sont entour& par notre r&&at final B partir du mod& de la diffusivite turbulente. 
On montre que lorsque Ie terme de transport parall&le & l’interface est nCgligi, I’expression r&&ante coin- 
cide exactement avec celle donnie par le premier travail de Danckwerts (I) avec I’idte du remplacement 
de surface. Puisque la diffusiviti: thermique peut &re relike aux parametres hydr~ynamiqlles, on pourrait 
espirer cela pour le taux de renouvellement des surfaces, car une relation simple entre les deux 
paramktres est trouvke. 

Les modtles de renouvellement de surface et de diffusiviti turbulente ne doivent pas itre consid& 
comme deux approches diffkrentes pour dtcrire le mime phinomkne puisqu’ils sont simplement reli&. 

GASABSORPTION IN VERBINDUNG MIT UMKEHRBAR~N UND NICHTUMKEHRBAREN 
REAKTIONEN ERSTER ORDNUNG IN FLijSSIGKEITSFILMEN 

Zusammenfassung-Das Problem der Absorption mit chemischer Reaktion in einem turbulenten 
Rieselfilm wird theoretisch untersucht, wobei angenommen wird, da8 der Sto~trans~rt normal zur 
Phasengrenzfl~che als kombinierter moiekuI~er und turbulenter Mechanismus ablguft. Es wird 

angenommen, da0 die scheinbare Temperaturleitftihigkeit eine Funktion der Entfernung von der Gas- 
Fliissigkeits-Grenzfliche ist. Eine sehr einfache und genaue N2herungslGsung wird erreicht, wenn die 
umkehrbaren und nichtumkehrbaren Reaktionen vom Typ erster Ordnung sind. Das Hauptergebnis ist die 
Funktion zur Voraussage der Stofftranspo~rate an der Phasengrenzfl~che. Vergleicht man dieses Resultat 
mit Ergabnissen, die man nach der Vorsteflung der O~rfl~chenerneuerung erhslt, dann zeigt sich, da13 
unsere Ergebnisse, die mit dem Model1 der scheinbaren Temperaturleitfihigkeit gefunden wurden, die 
meisten davon enthalten. Weiter wird gezeigt, da0 bei Vernachkissigung des konvektiven Transportterms 
parellel zur Phasengrenzfllche die entstehenden Ausdriiche exakt mit denen iibereinstimmen, die sich aus 
der bahnbrechenden Arbeit von Danckwerts [l] ergeben, wenn man seiner Idee der OberflLhener- 
neuerung folgt. Da die scheinbare Temperaturieitf~higkeit mit hydrodynamischen Parametern in 
Beziehung gesetzt werden kann, ist das such fir die OberflPchenerneuerungsrate zu erwarten, zumal eine 
einfache Beziehung zwischen den beiden Parametern besteht. Abschlieflend wird festgestellt, daB die 
Modelle der Oberfl&henerneuerung und des scheinbaren Temperaturleitftihigkeit nicht als zwei 
verschiedene M~glichkeiten zur Beschreibung des gleichen Phlnomens betrachtet werden sol&en, weil sie 

in einfacher Weise untereinander verkniipft sind. 

AIXOPIXJMII rA3A, COrH’OBOXJJA~~A5IC$I 06PATHMbIMH kf 
HEO~PAT~MbIM~ PEAKL&kUrMW I-IEPBOrO i-IOPXAKA B XI;WKOCrA HPM 

H~~~~~ T~~Y~EHTH~~ 

AHHOTIUIW- Ilpo6neMa a6cop6sHH npH~anwHt4 xm4HqecKofi pea~u~H B TypCiyneHnioii cTeKaloIlreii 

nnBHKeaHanH3HpyeTcnTeopeTHq~KHnpHnon~eelm.9~0 nepeeocMaccsInowopManHK noBepmwTH 

p3AeJla npOHCXOAHT B FyJIbTaTe COBMeCTHOl-0 Ae&CTBHB MeXaHH3MOB MOM?KyJlXpHOrO H Typ6y- 
neHTHoronepeHoca.n~~onafae~n,rtTo ~o~~~~~T~yneH~0~ AH~~~HB~X~T~~~~K~H~~ 

pacclorHHs no no~epmocm pa3Aena ra+RHLZPOCfb. IIonyqeHo 09eHb npoc~oe nptinlmceHHoe 

pemeHHeanncny~ar,KOrAa~wecalrepeaKu~XRanrlo~CnpeaxuHnMHnepeoronopnnKao6pa~~~0r0 

HHe06~THMOrOTWOB.~HdBHbIM~3yAbTaTOMa_HaJIH3aBB~lreTcaB~lKeHHeQnK paC>&aCKOpOCTH 

nepeHocaMaccblHa nOBeplurOCTH pa3AeAa.IIpHCpasHeHHsfC pWyJibYTiTaMH,lIoJI)"leHHb&H Ha OCHOBe 
TeOpHH 06HOBReHEES nO~p~~H,Ha~AeHO,qtfo6onbm~~o H3HlDL BXO~~BHam OKOHqa~flbH~~ 

pe3yJIbTaT, ilOJly'4eHHb6i C nOMOU@K, MOiWlH Tyfl6yJieHTHOsi AH#y3HH. K&We TOTO, nOKaW,HO, 

4TonpHnpeHe6pelreHHH~oHeeKTlreehnrtnepcHocoM napannenbH0 rpaHmre pca3nena $as,nonylleHHoe 
BbIpaXCeHHe IIOJIHOCTbH) COBnWeT C Bblpa*eHlieM, npHBeACHHblM B nepBOHaWlbHOk pa6oTe 

&HrtBep~Ca[l]~ Bbme.AeHHbiM Ha ocnoseero~eop~~cMe~b~ noaepxwon~. IIocronbKy xO~$@~H~HT 

7yp6ynezrTxofi .5si1#y3HII Moxoio omecrsi K r~~~aM~x~ napaMelpaM, TO T~K Xce MACHO 

nOCTyrUtTb HCO CKO~lWO 06HOBJleHHB nO=pXHoCTH, IIOCKOAbKy nOJTy'ieH0 npOC+Oe COOTHOmeHHe, 

cBn3bmaioWee o6a 3~~napaMe~pa. 

CneJlBH BslBo.4 0 TOM, YTO MOneAH 06HOBJleHFlX nOBepXHOCTH H TypFiyAeHTHOir AH+#y3HH He 

AOJOKHbI paCCMaTpHBaTbCff KaK lIBa pa3JIWlHbU IlOJlXOlIa K OAHOMy RBJICHHHI, nOCEOJIbKy OHH 

XMX~~XB~~~BX~HH~~. 
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